Evidence for an FU Orionis-like Outburst from a Classical T Tauri Star


We present pre- and post-outburst observations of the new FU Orionis- like young stellar object PTF 10qpf (also known as LkHα 188-G4 and HBC 722). Prior to this outburst, LkHα 188-G4 was classified as a classical T Tauri star (CTTS) on the basis of its optical emission-line spectrum superposed on a K8-type photosphere and its photometric variability. The mid-infrared spectral index of LkHα 188-G4 indicates a Class II-type object. LkHα 188-G4 exhibited a steady rise by åisebox-0.5ex 1 mag over i̊sebox-0.5ex 11 months starting in August 2009, before a subsequent more abrupt rise of >3 mag on a timescale of rs̊ebox-0.5ex 2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (1) an increase in brightness by gsim4 mag, (2) a bright optical/near-infrared reflection nebula appeared, (3) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Hα which is characterized by a P Cygni profile, (4) near-infrared spectra resemble those of late K-M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H$_2$O, and (5) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHα 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid- infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified CTTS LkHα 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post- outburst evolution for comparison with other known outbursting objects.

Astrophysical Journal