The Massive Progenitor of the Type II-linear Supernova 2009kr


We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (åisebox-0.5ex 26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M $^0$ $_ V $ = -7.8 mag) yellow supergiant with initial mass i̊sebox-0.5ex 18-24 M $_sun$. This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN.

Based in part on observations made with the NASA/ESA Hubble Space Telescope (HST), obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 05-26555; the 6.5 m Magellan Clay Telescope located at Las Campanas Observatory, Chile; various telescopes at Lick Observatory; the 1.3 m PAIRITEL on Mt. Hopkins; the SMARTS Consortium 1.3 m telescope located at Cerro Tololo Inter-American Observatory (CTIO), Chile; the 3.6 m Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii; and the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, with generous financial support from the W. M. Keck Foundation.

Astrophysical Journal Letters