Something very exciting is happening right now across the landscape of the physical and mathematical sciences: we are finally starting to learn fundamentally new things about how the universe works because of the direct and purposeful use of artificial intelligence/machine learning (AI/ML). Last week, two major results (discussed below) suggests that the long-sought, oft-discussed hope of an AI-driven revolution in science may now be coming to fruition.
To be sure, AI/ML has been an integral part of our scientific workflows for years.
Cosmic ray (CR) identification and replacement are critical components of imaging and spectroscopic reduction pipelines involving solid-state detectors. We present deepCR, a deep learning based framework for CR identification and subsequent image …
Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves …
There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the …
Type Ia supernovae are key tools for measuring distances on a cosmic scale. They are generally thought to be the thermonuclear explosion of an accreting white dwarf in a close binary system. The nature of the mass donor is still uncertain. In the …
Gas accretion onto some massive black holes (MBHs) at the centers of galaxies actively powers luminous emission, but most MBHs are considered dormant. Occasionally, a star passing too near an MBH is torn apart by gravitational forces, leading to a …
Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission …
Analyses of supernovae (SNe) have revealed two main types of progenitors: exploding white dwarfs and collapsing massive stars. Here we describe SN 2002bj, which stands out as different from any SN reported to date. Its light curve rose and declined …